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The linear dynamics of rotating Rayleigh-Bénard convection with rigid stress-
free boundaries has been thoroughly investigated by Chandrasekhar (1961) who
determined the marginal stability boundary and critical horizontal wavenumbers for
the onset of convection and overstability as a function of the Taylor number 7. No
closed-form formulae appeared to exist and the results were tabulated numerically.
However, by taking the Rayleigh number R as independent variable we have found
remarkably simple expressions. When the Prandtl number P = P. = 0.67659, the
marginal stability boundary is described by the curve T(R) = R[(R/R.)!/> — 1] where
R, = %n“ is Rayleigh’s famous critical value for the onset of stationary convection
in a non-rotating system (7 = 0). For P < P, the marginal stability boundary is
determined by this curve until it is intersected by the curve
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A simple expression for the intersection point is derived and also for the critical
horizontal wavenumbers for which, along the marginal stability boundary, instability
sets in either as stationary convection or in an oscillatory fashion. A simple formula is
derived for the frequency of the oscillations. Further, we have analytically determined
critical points on the marginal stability boundary above which an increase of
either viscosity or diffusivity is destabilizing. Finally, we show that if the fluid has
zero viscosity the system is always unstable, in contradiction to Chandrasekhar’s
conclusion.

1. Introduction

Rayleigh—Bénard convection was first investigated theoretically by Rayleigh (1916)
who was inspired by the experimental work of Bénard (1900) and the more qualitative
work of Thomson (1882). A century before that, Rumford (1797) performed systematic
experiments with convection in fluids heated from below. His work was inspired by
an accident involving rice soup which was cold near the top but unfortunately still
hot near the bottom of the bowl. He also wondered why dishes such as apple
pies remain hot for remarkably long periods. The additional effect of rotation was
first considered theoretically by Chandrasekhar (1953) and Chandrasekhar & Elbert
(1955). The contents of these papers, with some modifications and additions, are
in Chandrasekhar (1961) monograph (chapter III). Strictly speaking they studied
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the influence of Coriolis forces in the dynamics and disregarded effects like curvature
of iso-density surfaces as would occur in a rotating container, i.e. centrifugal forces
are ignored. Here, we revisit this classical rotating linear RB-problem with stress-
free rigid upper and lower boundaries. The top and bottom are considered perfect
heat conductors, maintained at constant (different) temperatures, with the higher
temperature at the bottom. The horizontal domain is unbounded, the Boussinesq
approximation is made, incompressibility is assumed and the kinematic viscosity
and diffusivity are constant. In §2.1, we discuss the general properties of the cubic
polynomial which determines the eigenvalues p for normal-mode perturbations with
an assumed time dependence exp(pt). Almost an ancient subject now, we would
expect that nothing new could be added to the literature, but we show in §2.2 that
the linear stability results tabulated in Chandrasekhar (1961, chap. 3) for this ‘easy’
case of so-called free—free boundaries in the vertical can be summarized concisely
with simple closed-form formulae which hitherto appear not to have been noted.
The marginal stability boundary is discussed in some detail since we had difficulty
following Chandrasekhar’s development in some places. In §2.3, we show that in
the limit of vanishing viscosity, Chandrasekhar’s conclusions were wrong. In §3, we
discuss what happens if either viscosity or diffusivity is increased. We find that there
are critical Taylor and Rayleigh numbers above which marginally stable systems are
destabilized by an increase in either viscosity or diffusivity alone with all else held
fixed. In §4, we summarize the results and discuss some additional matters of possible
interest.

2. Linear stability

In the standard RB-problem, density variations are caused by temperature
variations. In the unperturbed system, the temperature distribution between the
bottom at z = 0 and top at z = d, with z the vertical coordinate, is linear:
T (z) = 9y — Bz. The system rotates with an angular velocity £ about the z-axis,
which coincides with the direction of the acceleration due to gravity g, and, in the
co-rotating frame of reference, the velocity field is zero. With 8 positive (an ‘adverse’
temperature gradient), the temperature at the bottom is higher than at the top. Density
is assumed to vary with temperature J according to p = py[l + a(Zy — 7)] where
Ty is a reference temperature (here the temperature at the bottom) for which p = pg
and « the coefficient of volume expansion, assumed constant. The derivation of the
equations governing the RB-problem for an incompressible fluid under the Boussinesq
approximation and additional simplifying assumptions and their justification are
extensively discussed by Chandrasekhar (1961) and, for example, Drazin & Reid
(1981) or Manneville (1990) (for the non-rotating case). Linearizing the resulting
equations about the basic motionless state, a set of coupled linear equations is
derived for the evolution of small-amplitude velocity and temperature perturbations.
The stability of the system is investigated by introducing velocity perturbations with a
vertical component w oc exp[pt +i(k,x +k,y)] sin(nmz/d) and horizontal components
that vary instead with cos(nmz/d) plus temperature perturbations proportional
to exp[pt + i(k.x + k,y)]sin(nnz/d). The vertical wavenumber takes the values
n = 1,2, --. Chandrasekhar showed that the boundary conditions at the top and
the bottom mentioned in §1 will all be satisfied when the system is subjected to
such perturbations and that stability/instability is determined by a cubic polynomial
with the exponential time factor p as variable and coefficients that are functions of
ke, ky,n,d, $2, gap plus k, the coefficient of thermal diffusivity and v, the kinematic
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viscosity. The cubic is (equations 239-240 in Chandrasekhar 1961, chap. 3, §29)

PP+ BpP+Cp+D=0 where p=(d*/v)p, (2.1)
and
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are the Rayleigh number, Taylor number and Prandtl number, respectively, and
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is the non-dimensional horizontal wavenumber. Note that p has been non-
dimensionalized with the time scale d?/v which is what Chandrasekhar chose.

R, T and P characterize the system, and a and n the perturbations. If for given
{R, T, P} for all perturbations, the three roots of (2.1) have Re p < 0 there is stability.
When, for certain perturbations, there is at least one root with Re p > 0, then there
is instability. With each root of the cubic there is an associated combination of a
flow field and temperature distribution, which we refer to as ‘modes’ although not
explicitly considered here. The surface in the space spanned by {R, T', P} separating
stable systems from unstable systems defines the marginally stable states. As fully
explained by Chandrasekhar (1961), when crossing from the stable to the unstable
side, instability can set in as stationary convection in which case one root of (2.1)
is p =0, or in an oscillatory fashion when there are two purely imaginary, complex
conjugate roots. The latter case is in some places referred to by Chandrasekhar as
a case of overstability, whereas in other places overstability means cases of complex
conjugate roots with Im p #* 0 and Re p > 0, i.e. instability in the form of oscillations
of increasing amplitude. We will, in what follows, also say that there is overstability
when Im p # 0 while Re p = 0 and call the associated modes ‘overstable modes’. We
refer to associated with p = 0 as ‘convective modes’.

2.1. The eigenvalues

The marginal stability boundary in the parameter space spanned by {R, T', P} can be
determined by examination of the coefficients B, C and D without actually solving
the cubic. First, note that B in (2.2) is always positive. Since the coefficients are real,
either the three roots are real or one root is real and the two other roots are complex
conjugates. Graphically, the location of the real roots of the cubic can be found by
looking for the intersection point of the curve

y=f(p)=p’+Bp*+Cp, (2.4)

with the horizontal line y = —D. At the origin in the yp-plane, the slope of the
curve is d; f(p)ls—0 = C, and the curvature is equal to 2B which is always positive.
Thus, for C > 0 it is upwards and for C < 0 downwards. When C = 0, the second
derivative of f is 2B > 0 and there is positive curvature at the origin while the curve
has a horizontal tangent there.
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FIGURE 1. Graphs showing examples of the function (2.4) (solid curve) with B > 0 and the
horizontal line y = —D for D < 0. Intersections of the curve with the horizontal line determine
the real roots of (2.1). There is either (a) one positive real root p = d, marked by @, and the two
other roots are complex conjugates or (b) the two other roots, marked by O, are negative real.
In either case, the real part of the two roots in addition to p = d is negative (see text).

211. D <0

When D < 0 there will be a positive real root p =d of f(p) = —D = |D| because
the curve f(p) passes through the origin and then must cut the level line y = |D| > 0
as p increases, since f(p) — +oo for p — +oo. There may be a single real root, as
in figure 1(a), or three real roots as in figure 1(b). If there are two additional real
roots, they must be negative as can be seen geometrically from the condition that the
curvature is positive at the origin since B > 0. If the additional roots are not real,
they must be complex conjugates. In either case, we can prove that the two additional
roots must have negative real parts. When the additional roots are real, say p = by, b,
the cubic must equal (p — b1)(p — b2)(p —d) =0 or

P’ —(d + by +by)p* + (biby + (b1 + by)d)p — bibrd = 0, (2.5)
whereas if they are complex conjugates, say p = b + iw, the cubic is
P —(d +2b)p* + (b* + * 4+ 2bd)p — (b + w*)d = 0. (2.6)

Assuming real roots, (2.5) implies b1b, > 0 since D =—b1b,d <0 and d > 0. Therefore,
by and b, have the same sign and are non-zero. Furthermore, we always have
B = —d — (by + by) > 0 and therefore b; < 0 and b, < 0, as sketched in figure 1(b).
With (2.6), it follows that when the roots are complex conjugates, the real part b < 0
because B = —d — 2b > 0. In either case, therefore, there is one positive real root
p = d plus two roots with Re p < 0.

212. D >0
When D > 0 there will be one negative real root p = —d of f(p) = —D where the
curve f(p) cuts the level line y = —|D| < 0, because the curve f(p) passes through

the origin and f(p) —» —oo for p — —oo0. Again, there could be a single real root as
in figure 2(a), so that the other two roots are complex conjugates, or three real roots,
as in figure 2(b, ¢). If the two additional roots are real the cubic must equal

P’ +(d = by + b2)) B + (biby — (b1 + b2)d)p + bibrd = 0. (2.7)
When the additional roots are complex conjugate roots the cubic is

PP+ (d —2b)p? + (b* + &* — 2bd)p + (b* + 0*)d = 0. (2.8)
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FIGURE 2. Graphs showing examples of the function (2.4) (solid curve) with B > 0 and the
horizontal line y = —D for D > 0. Intersections of the curve with the horizontal line determine
the real roots of (2.1). There is either (a) one negative real root p = —d, marked by O and
the two other roots are complex conjugates or (b) when BC — D < 0 the two other roots,
marked by @, are positive real and when (¢) BC — D > 0 negative real. When there is one
negative real root only, as in (a), the two other roots have Re p > 0 when BC — D < 0 and
Re p <0 when BC — D > 0. When BC — D = 0, the two additional roots have Re p =0 and
are p = +iC'/? (see text).

The fact that B > 0 is no longer sufficient to determine the sign of the real parts
of the additional roots, but the discriminant BC — D is of help. From (2.7) and
D = b1b,d > 0, it follows that

BC — D = (by + by)*d — (by + by)(d*> + byby),  bib, > 0. (2.9)
From (2.8), it follows that
BC — D = 4b*d — 2b(d* + b* + o?). (2.10)

There are three cases to be considered.

(i) BC — D < 0. In (2.9), the first term on the right-hand side is positive, since b;
and b, are non-zero and have the same sign. The second term must be negative in
order to have BC — D < 0. Thus, the factor b; + b, in the second term must be
positive, since d”> + bb, > 0. It follows that b; > 0 and b, > 0, as in figure 2(b).
Similarly, for complex conjugate roots, (2.10) implies b #+ 0 when BC — D < 0. Thus,
the first term is positive and since BC — D < 0, the second term must again be
negative which implies b > 0. In either case there is one negative real root p = —d
plus two roots with Re p > 0.

(i) BC — D > 0. In this case it is convenient to write (2.9) and (2.10) as

BC — D = —(by + by))(d* +C), bib, >0, (2.11)

and
BC — D = —2b(d* + C), (2.12)
which follows from substitution of C from (2.7) and (2.8) into (2.9) and (2.10),
respectively. Since D > 0 and BC — D > 0, it follows that C > 0 because B > 0 and
therefore d*> + C > 0 in both (2.11) and (2.12). For real roots, b; and b, are non-zero
and have the same sign and therefore, according to (2.11), by < 0 and b, < 0, as in
figure 2(c). For complex conjugate roots, (2.12) implies that b # 0 since C > 0 and
because BC — D > 0 we must have b < 0. Thus, all roots have Re p < 0.
(iii) BC — D = 0. Assuming that in addition to p = —d there are two real roots,
(2.11) implies that by +b, = 0 because C > 0 and d>+C > 0. However, this contradicts
bib, > 0 which follows from D = b;b,d > 0. Thus, the additional roots cannot be real
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D <0 D >0 D=0
BC—D <0  Unstable Unstable Unstable
p=0
BC—D >0  Unstable Stable Re p. <0
Re p_ <0
p=—d p=0
BC—D =0  Unstable P+ = +Hiw p+=0
P =—lw p-<0

TaBLE 1. A summary of the properties of the roots of the cubic (2.1) when B > 0. ‘Stable’
means all three roots have Re p < 0 whereas ‘unstable’ means that at least one root has
Re p > 0. In the first column the sign of BC — D is irrelevant since instability follows from
D < 0 alone (see text and figure 1).

and must be complex conjugates. With (2.12), we see that the two complex conjugate
roots are purely imaginary when BC — D =0, i.e. b =0 and p = +iw. Setting b =0
in (2.8), we find that d = B and w’ = C.

213. D=0

Only when D =0 1is p = 0 a root, in which case, the other two roots are given by
p =—(iB) £ [(1B)* — C]'2. These roots have a negative real part when C > 0, since
B > 0. When C < 0, one of the roots has a positive real part. When C = 0, there
is an additional root p; = 0 and p_ = —B. These three cases can be considered to
correspond to BC — D > 0, BC — D < 0 and BC — D = 0, respectively. Table 1
summarizes all the above.

2.2. Determination of the marginal stability boundary
2.2.1. The convection curve

The stability of the system is determined by the sign of D and BC—D. Equation (2.2)
shows that D < 0 when, for given a,n and T, R is large enough. D > 0 for small
enough R and D = 0 when

(x +n’n®)® + Tn’n> —Rx =0 where x = d’. (2.13)

For fixed T and n, this determines a curve
1
R = —[(x + n’n*)’ + Tn’n’] (2.14)
X

in the Rx-plane. An example is shown in figure 3(a). For large enough R and given n
and T there are two positive x (or a), indicated by x; and x,, between which D < 0.
This implies instability according to table 1. D > 0 for all x when R is smaller than a
critical value R.. Equation (2.13) shows that R, will increase with increasing rotation
(increasing T'). This is indicated in figure 3(b) where we have drawn the curve (2.14)
along which D = 0 for T = 0 together with that for 7" > 0, both for the same
n-value. R, also increases with increasing vertical wavenumber n. R, is determined
by the condition that (2.13) is satisfied for just one positive x-value, indicated by
x. in figure 3. Chandrasekhar (1961) determined the critical Rayleigh number R.
and critical horizontal wavenumber a. = (x.)'/? by solving 3,R = 0, with R(x) as in
(2.14). This is equivalent to finding the lowest point on the curves shown in figure 3.
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FIGURE 3. Graphs showing the curve (2.14) (thick line) as a function of x = a?. (a) When
R > R, the coefficient D in (2.1) is negative for x; < x < x,. This implies instability (see
text and figure 1). When R < R., D > 0 for all x. The critical Rayleigh number R, and

N J. 1/2 . ..
corresponding critical wavenumber a, = xo/* are where the curve has its minimum. (b) R,

and x. or a. increase with increasing rotation, measured by the Taylor number 7. A similar
increase occurs for increasing vertical wavenumber n (not shown).

0,R = 0 when
2x° + 3n’n’x? = (n’n?)® + Tn’n’. (2.15)

Chandrasekhar (1961) put n = 1 since this will yield the smallest critical Rayleigh
number. He numerically determined the positive real root of this cubic as a function
of T. This gives the critical horizontal wavenumber a'“/(T'). Substituting this back into
(2.14), he obtained the critical Rayleigh number REC)(T). The superscript (c¢) indicates
that these are critical values for convective modes, i.e. modes for which p = 0. This
is how table VII of critical Rayleigh numbers and wavenumbers in Chandrasekhar
(1961, chap. III) was compiled for a range of T-values. In the RT-plane these
numerical values can be used to draw the curves R\)(T) and '“(T) (figures 21 and
22 in Chandrasekhar 1961, chap. III).

An alternative approach that makes analytical progress possible is the following.
Consider (2.13) and note that for given n and T, the critical Rayleigh number R
and wavenumber a9 are determined by the condition that the straight line Rx is
tangent to the third-order curve (x + n’n?)® + Tn’>n? as shown in figure 4(a). This
occurs when

R = 3(x + n*n?)%. (2.16)

If (2.16) is put into (2.13), we obtain Chandrasekhar’s problem: the cubic (2.15) has
to be solved. However, we can solve (2.16) for x, ie.

x=a>= (AR)"? —n2n2. (2.17)

We took the positive root because a> must be positive. Substituting (2.17) into (2.13),
we find the critical Taylor number T'9 as a function of R and n:

TY(R,n) =R[(R/R.n))"> —1] where R.(n)=Zn*n". (2.18)
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FIGURE 4. (a) The critical Rayleigh number R, and correspond1n§ wavenumber a. = x* is
found at the point where the straight line Rx is tangent to (x 4+ n’n?)® 4+ Tn’n?. (b) The critical
Taylor number T(C as a function of R for n = 1 and n = 2. The leftmost curve T(C)(R n=1),
given by (2.19), starts on the R-axis at R = R, = %47“4 and for n > 1 at R = n*R.. For
(R, T left of the curve T'(R,n = 1), D > 0 for all {a,n}. On the curve, D = 0 only when

{a,n} = {a(c)(R) 1}, with a')(R) given by (2.20), and D > 0 for all other {a,n}. For points
{R, T} to the right of the leftmost curve there are {a, n} for which D < 0, implying instability,
e.g. there will be a positive real root of (2.1).

In the RT-plane these curves start on the R-axis (where 7 = 0) at R = R.(n). The
leftmost curve has n = 1, as shown in figure 4(b). It follows that D > 0 for all {a, n}
when {R, T'} is to the left of the curve

TYR)=R|[(R/R.)"*—1] where R, =R, (n=1)=2Zn"~6575 (219

This is the inverse of the (implicit) relation R‘)(T) numerically determined by
Chandrasekhar (1961). When {R, T'} lies exactly on the curve (2.19), D = 0 for
{a,n} = {al9(R), 1} with

a(R)=[(1R)"* =", (2.20)

which follows from (2.17) with n = 1, but D > 0 for all other {a, n}. Thus, when
{R, T} lies on (2.19), there is one convective mode (f = 0) when {a,n} = {a'“(R), 1}
while for all other {a,n} at least one mode is damped (p < 0; see figure 2). When
R =R, T =0 and ({R)"? —n?> = In? so that al(R.) = (in?)"/%. These are
the critical Raylelgh and horlzontal wavenumber found by Raylelgh (1916) for the
non-rotating case. For {R, T'} to the right of the curve (2.19), there are a and n for
which D < 0 and there will be unstable modes (p > 0; see figure 1).

As we have said, Chandrasekhar (1961) determined a'“(T') and R')(T) numerically,
but by switching to R as the independent variable rather simple closed-form formulae
are found. When we compared the critical values that follow from our analytical
expressions with those calculated by Chandrasekhar, we found that the errors in the
latter were maximally 0.6% and in most cases much less than 0.1%. Such small errors
can be considered round-off errors since Chandrasekhar’s data were given to four
significant digits.
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2.2.2. The overstability curve

When {R, T} lies to the left of the ‘convection curve’ (2.19), stability is not
guaranteed. According to table 1, we have to investigate the sign of BC — D. It
follows with (2.2) that

P’Tn’n>  Rx
(1+P)? 242P

Observing that (2.21) follows from (2.13) by replacing R with R/(2+2P) and T with
P?T /(14 P)?, we find that along the curve

BC—D=0 when (x+n’n®)’+ 0. (2.21)

1+P\"?/ R\ 1+P
TYR,P)=R|| ——+ —) - — 222
owr =r|(550) (7) ~ | 22
BC — D =0 when {a,n} = {a")(R, P), 1} and
R 12 1/2
@Wkpp=<aﬁ§> _ﬁ]. (2.23)

For all other {a,n}, BC — D > 0 when {R, T’} lies on (2.22). When {R, T} is to
the left of (2.22), BC — D > 0 for all {a,n} and when {R, T} is to the right of
(2.22), BC — D < 0 for some {a,n}. The curve T'(R, P) starts on the R-axis at
R = 2(1 + P)R.. This follows from setting TE”) = 0 in (2.22). For all P > 0, this
is to the right of the starting point of the convection curve (2.19). The superscript
(0) in (2.22) and (2.23) indicates that these are critical numbers for which there are
overstable modes, as will be seen shortly. Since

(14+P)"?/(2°P%)'*=1 for P =P ~0.67659, (2.24)

the coefficient multiplying R*? in (2.22) is smaller than unity when P > P.. In that
case, (2.22) stays to the right of the convection curve (2.19), as shown in figure 5(a).
When P < P,, (2.19) and (2.22) intersect at

214+ P)—(14P)?
(14 P)2—232p2

which is found by equating (2.19) to (2.22). When P = P, (2.22) asymptotically
approaches (2.19) in the limit R — oo and the intersection point is formally at infinity.
In figures 5(b)-5(d), we show that, with decreasing P < P., the intersection point
moves down. The lowest point in the RT-plane occurs in the limit P — 0 for which
R, = 2R, and T; = 2(2"/> — 1)R,.. Chandrasekhar (1961) believed that there is no
simple formula such as (2.25) for the intersection point. He calculated it numerically
for several P-values. Comparison of his results with the exact values given by (2.25)
revealed errors mostly of the order of 1% with one notable exception where it
was almost 6%. Chandrasekhar used the transformation linking (2.21) to (2.13) to
calculate the critical Rayleigh number R’ and wavenumber ' as a function of T
for P = 0.025 (the number for mercury) from the data in his table VII in chapter III.
When we compared our theoretical values according to (2.22) and (2.23) for this
case of P = 0.025 with his, errors were again found to be very small, i.e. roughly
comparable to the round-off error due to tabulating the results only to the fourth
significant digit.

Ri{(P)=(1+y)*R., Ti«(P)=y(1+y)R,, . (225)
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FIGURE 5. (a) Graph showing that when P = 1, the overstability curve T'”(R, P) (2.22) does

not cut the convection curve 7'(R) (2.19). The overstability curve starts at R = 2(1 + P)R..,
the convection curve at R = R.. This example with P = 1 is representative for all P > P..
(b)—(d) For P < P., the curves cut at {R, T} = {R;(P), T;(P)} (marked by O). R;(P) and
T:(P) are given by (2.25) and decrease with decreasing P. In the limit P = 0, R; = 2R, and
T; =222 —1)R,, whereas for P - P,, R;, T; — .

2.2.3. The marginal stability boundary

When P = P,, consider the ‘boundary’ consisting of the convection curve (2.19)
drawn as a thick line in figure 5(a) and when P < P,., the boundary composed of
the convection curve (2.19) for R, < R < R; and the ‘overstability curve’ (2.22) for
R > R; (thick lines in figure 5b—d). For all points {R, T'} to the left of this boundary
D > 0 and BC — D > 0 for perturbations with any {a,n}. According to table 1,
the system is stable for such R and T values, i.e. the three roots of the cubic have
Re p < 0 for all {a, n}.

If {R, T} is a point on the convection curve section T'”(R) of the boundary,
excluding the intersection point (if any), there will be one convective mode (p = 0)
when {a,n} = {a/“(R), 1}, since then D = 0 and the other two modes are damped
according to table 1 because BC — D > 0 for all {a, n} on this section (recall that as
discussed in §2.2.2 BC — D > 0 to the left of the overstability curve). For all other
{a,n}, each mode is damped according to table 1 because then both D > 0 and
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FIGURE 6. Graphs summarizing the stability properties of the system (a) for P > P. and () for
P <P, where O indicates the intersection point {R;, T;}. Stability/instability as indicated
follows from table 1.

BC — D > 0. When {R, T} is on the overstability curve section T'”(R, P), excluding
the intersection point, all modes are damped for {a,n} # {a!”(R, P), 1} because
then BC D > 0 while D > 0 for all {a,n} on this section. BC — D = 0 when
{a,n} = {a”(R, P), 1} and since D > 0 there is then one damped mode and two
osc111atory or overstable modes (see table 1). The overstable modes are associated
with the roots

P+ = tiw where o’ =C, (2.20)

as shown in §2.1.2. At the intersection point {R;, T;} both D > 0 and BC — D > 0
except when {a,n} = {al(R), 1} or {a,n} = {a/’(R, P), 1}. For all {a,n}, excluding
these two cases, each mode is damped. When {a,n} = {a'(R, P), 1} there are
two overstable modes and a damped mode since then BC — D = 0 and D > 0
because al”(R, P) # a!(R) as is seen by comparing (2.20) and (2.23). When {a, n} =
{a')(R), 1}, there is a convective mode and two damped modes because then BC—C >
0 and D = 0. Thus, all along the boundary no roots have Re p > 0. If {R, T'} crosses
the boundary to the right, we enter territory where either D < 0 or BC — D < 0
for some {a,n} as indicated schematically in figure 6. Table 1 shows that there
will be instability. This proves that, for P = P., the convection curve (2.19) is the
marginal stability boundary (figure 6a) and for P < P., the curve composed of the
convection curve (2.19) up to the intersection point {R;, T;} and then continued by
the overstability curve (2.22) (figure 6b).

The value of the non-dimensional oscillation frequency w of the overstable modes
is obtained by substituting 7 = TR, P), n = 1 and a = a”(R, P) in C which
results in

2RP—1_P %_%PZR 31/21 P)/22R1/2 297
(R P) = s | 2R (3) (14 P) (227)
Chandrasekhar (1961) derived that (he uses o instead of w)
1—P Tn?
2= (&) (2.28)

14+Pa%+n?
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which also yields (2.27) when T = TR, P) and a = a'/(R, P) are substituted.
Chandrasekhar (1961) used the transform noted into §2.2.2 linking the results for the
convection curve to that for the overstability curve to calculate the critical horizontal
wavenumber for overstability as a function of 7 and P, i.. a'”(T, P). These values of
al®/(T, P) were substituted in (2.28). Comparison of our theoretical values (2.27) with
those calculated by Chandrasekhar for a range of 7T-values and P = 0.025 (table XI
in Chandrasekhar 1961, chap. III) revealed that the errors are negligibly small, again
comparable to the round-off error (four significant digits).

2.3. The limit v — 0

If we let v — 0 with a non-zero fixed «, we must be careful because R, T and the
coeflicients (2.2) become infinite. The singular behaviour of the cubic occurs because
we chose the time scale d?>/v to non-dimensionalize p. This does not occur if the
cubic is written in its dimensional form, which is obtained by multiplying (2.1) with
(v/d?)’. We then obtain p*+ B'p*+C'p+ D' = 0 where B’ = (v/d*)B, C' = (v/d*)’C
and D' = (v/d*)’D. Limits such as k — 0 and v — 0 can safely be taken because
B’,C’ and D’ remain finite. Non-dimensionalizing with the finite time scale d*/k and
letting v — 0 we get

T'n*n? — Ga?

PP+ (a* +n’n?)p? + { pEp— ] p+T'n’n> =0 with p=(d*/k)p. (2.29)

The non-dimensional numbers are

202)*d* d*
7= l . G= go‘ﬁz . (2.30)
K K
Identifying
D =T'n*n*>, BC—D=—-Gd’, (2.31)
it follows from table 1, since D > 0 and BC — D < 0, that the system is always
unstable (there is always a real negative root p = —d and two roots with Re p > 0).

There are no convective modes (p = 0 is not a root because D #+ 0) and no purely
oscillatory modes (p = +iw are not roots because BC — D #+ 0). It is easy to show
that also in the limit of zero diffusivity (limx — 0) the system is always unstable.

3. Destabilization due to increased viscosity or diffusivity

In the absence of rotation, stability is solely determined by the Rayleigh number and
its value compared to the critical number R,. If we consider a system characterized
by some value R = R close to R, it follows that an increase in viscosity or diffusion
can decrease R to a value less than R, and in that sense we call this ‘stabilizing’.
Similarly, a decrease in the adverse temperature gradient S or the vertical extent
of the domain d is also stabilizing. In each case, these results are physically easily
understood. In the rotating system, there are some surprises however.

First, consider the effect of changing viscosity. Let Ry and Ty be the Rayleigh and
Taylor number for some initial viscosity vy, i.e.

gapd* (2£2)*d*

Ry , To= -
KV Vg

(3.1)
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With R(v) and T'(v) the Rayleigh and Taylor number for variable v and with all else
held fixed, we have

R*(v)Ty dT _ 2RT,dR

T(v)= — = —_— 2
0= TR (32)
Thus, the tangent to the curve traced out by {R(v), T(v)} as v varies is
dT  2R(v)T,
—_— = 33
dR R§ (3)
If {Ry, T} lies on the convection curve (2.19), the tangent there is
1/2
d7 = 2Ty =2 Ro —2, (3.4)
dR |4_p, R R,

which follows from (3.3) by setting v = vy and substituting T = T'“(R,). The tangent
to the convection curve at such a point {Ry, T} is

dT(R)

iR = 3(Ro/Ro)"? — 1. (3.5)

R=Ro
Equating (3.4) to (3.5), we find that the tangents are equal at {Ro, Ty} = {R}, T}
where

R’ =4R., T'=4R.. (3.6)

c

When the initial Prandtl number Py, = vy/k = P., the stability boundary is
the convection curve (figure 6a). An increase in v increases P and the stability
boundary therefore remains unchanged. For points on the convection curve (2.19)
with {Ro, To} < {R}, T’} an increase in viscosity, which decreases both R and T,
puts us into the stable domain because (3.4) is smaller than (3.5) at such points. This
is illustrated in figure 7(a) where we show the curve {R(v), T'(v)} when v is doubled
from vy to 2v, starting at a point below the critical point {R!, T'}. Clearly, after
doubling the viscosity, the final point is on the stable side of the marginal stability
boundary. For {R, Ty} > {R}, T}, (3.4) is greater than (3.5) and an increase takes us
into the unstable domain. This is illustrated in figure 7(b) where the final point is on
the unstable side of the stability boundary after doubling the viscosity. Thus, for high-
enough Rayleigh or Taylor numbers (R > R, = 4R, ~ 2630) an increase in viscosity
is destabilizing. For any stable point off the stability curve, it is straightforward to
calculate the increase in viscosity required to destabilize the system from the analytic
expression for the curve.

When 0 < Py < P., the marginal stability boundary is the convection curve (2.19)
for R, < R < R; and the overstability curve (2.22) for R > R; (figure 6b). A change in
the viscosity v changes P, and the stability boundary therefore changes simultaneously
with the value of R and 7. With (2.25), it follows that {R;, T;} = {R), T/} wheny =1,
which occurs for P = 0.3192. Therefore, for Py < 0.3192, all initial points on the
convection curve section satisfy {Ro, To} < {R!, T} and an increase in viscosity is
stabilizing as before since the intersection point (where the overstability curve section
starts) moves up and to the right because P increases (see figure 5) while {R, 7'} moves
down and to the left into the stable domain as in figure 7(a). For 0.3192 < Py < P,,
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FiGURE 7. Graphs illustrating the stabilizing/destabilizing influence of increasing viscosity.
Initial points {Ry, T} for some initial viscosity vy are marked by O. In each case, the viscosity
is increased to 2vy and the final {R, T} is marked by @. (a) When Py > P., an increase in
viscosity is stabilizing for points initially on the marginal stability boundary (thick line) when
below the critical point {R}, T'} (marked by %) but (b) destabilizing when above it. In these
cases, the stability boundary is the convection curve (2.19). When P, < P. and the initial point
lies on the overstability section of the marginal stability boundary, an increase is stabilizing.
(c) This is illustrated with an example for Py = 0.2. After doubling the viscosity, the final
point @ is to the left of the new stability boundary (dashed line) which in this example is for
P =04

there are points on the convection curve section that lie above {R}, T';} and for those
an increase is destabilizing. For points {R, T} on the overstability curve section
some finite distance away from the intersection point, an increase in viscosity is
stabilizing since {R, T'} moves down and to the left whereas the overstability curve
section moves to the right, thus putting {R, T} left of the shifted stability boundary.
This is illustrated in figure 7(c).

A change in diffusivity alters the Rayleigh and Prandtl number but leaves the
Taylor number unchanged. Let Ry and P, be the Rayleigh and Prandtl number for
some initial diffusivity ko, i.e.

d4
Ry = ga,B , Py= i
KoV Ko

If R(x) and P(x) denote the Rayleigh and Prandtl number for arbitrary « we have

R(k) = %’P(;«), sR = Rogp. (3.7)

=7,
where SR and 8P are the changes due to a change dx of the diffusivity. Consider
a point {Ro, T} on the overstability curve section of the stability boundary, i.e.
{Ry, Ty} satisfies (2.22) with P = Py and R > R;. The shift of the overstability curve
owing to a change 8P is determined by substitution of P = Py + §P in (2.22). If, for
a given T, we indicate with R’ the corresponding R-value on the overstability curve
for P = Py + P, then the horizontal distance between the original point {Ry, T}
and the new point {R’, T} is |[§R'| = |R" — Ry|. If for increasing diffusivity (8« > 0),
which corresponds to negative 8P, |SR| < |[§R’| then this is stabilizing, since then
R = Ry — |§R] lies to the left of the shifted overstability curve, and stabilizing when
I8R| > |8R'|. Using T'“)(Ro, Py) = T'”(Ry + 8R’, Py + 8P) with T'”(R, P) given by
(2.22), a relation between R’ and 8P can be derived such that §T7'”) = 0. Expanding
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the right-hand side of this equality in a double Taylor-series we find

172 3\ 172
(14 Py)' 2 1 RN (1 1 Ro|sp
212p, 252(1 + Py)1/2 [ \ R, 2" P,
I3+ Po) 2 (Re\? 1+ Py
| 22 \R.) 2

}(SR’ + O(SR?,8P%, 8R'SP). (3.8)

Assuming that R’ and 8P are small, we find after some rearrangements that

3(1+ Po)2 [ Re\ " Ro/R.)'?
( 3/20) = — (1 + Po) + 3(/20/ ) 72
2 R. 22(1 4 Py)/ . Ro

3(14Py)'” (Ro\'"” Py
(—iz_TO) <R_0> —(1+Py)
With (2.22), it follows that the term

31+ Py)* (R T
(;FTO)<R—°> —(1+P0)—3P2 °+

SR = sP.  (3.9)

1—|—P0
2

is positive. Comparing (3.9) to (3.7), we see that if

(RO/Rc)l/z f
W <1 then [SR'|<|SR|. (3.10)

Equality occurs when (dropping the subscript 0)

41+ Py
P2

R follows from equality in (3.10) and T subsequently by substitution of R = R i
(2 22). For initial points {R, T'} on the overstablhty curve, therefore, a slight i 1ncrease
in diffusivity is stabilizing when {R,, Ty} < {R%, T}, but for {RQ, To} > {RL, TE}
an increase is destabilizing. Figure 8(a) illustrates this for the case Py = 0.4 and a
change from «( to 2k( so that the final Prandtl number is P = 0.2. It is seen that in
this example the point starting below {R%, T} ends up on the stable side of the new
stability boundary. The point that starts above the critical point is, after doubling
k, on the unstable side of the new stability boundary. In figure 8(b) we show two
more examples where the initial points lie farther up the overstability curve than in
figure 8(a), and the destabilizing effect of doubling « is seen more clearly.

When Py > P. and {Ry, Ty} lies on the convection curve (the stability boundary
for P > P.), a small increase in « not exceeding some threshold so that P remains
greater than P., lowers R and takes us into the stable domain since the boundary
is unchanged. Cases where Py < P. or the increase in « is such that P becomes
smaller than P. are difficult to analyse mathematically. We find, generally, that if an
initial point {Ry, T} lies on the convection curve section of the stability boundary,
for increased «, the new point {Ro — [SR|, T} lies to the left of the shifted stability
boundary. So, an increase in diffusivity is stabilizing as before. It is difficult to prove,
however, and we merely illustrate this in figure 8(c) with two examples.

In the analysis and examples shown in figures 7 and 8, we took starting points on
the stability boundary. However, as should be clear from the graphs, generally, an
increase in viscosity or diffusivity can be destabilizing too for initial points slightly
left of the stability boundary, i.e. {Ro, T} in the stable region.

R=81+P)R.=R", T= R =T~ (3.11)
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FiGURE 8. Graphs illustrating the stabilizing/destabilizing influence of increasing diffusivity.
Initial points {Ry, T} for some initial diffusivity «y are marked by O. In each case, « is
increased to 2« and the final position of {R, T’} is marked by ®. (a) When P < P, an increase
in diffusivity is stabilizing for points initially on the overstability section of the marginal
stability boundary when below the critical point {RY, T%} (marked by *), but destabilizing
when above it. The example is for Py = 0.4. After doubling « to 2ko, the new stability
boundary (dashed line) is defined by the final Prandtl number P = 0.2. () is as (a) but for
points initially with larger R and 7. For points initially on the convection curve section of the
stability boundary, an increase in « is stabilizing. (c) This is illustrated with an example where
initially Py = 1. The dashed line indicates the final stability boundary defined by P = 0.5.

An increase in rotation (§2) is always stabilizing because T increases. A decrease of
the temperature gradient 8 is stabilizing as in non-rotating systems since it decreases
R. A decrease in d affects both R and 7', but it is still straightforward to show that
the result is always stabilizing, as in non-rotating systems. This is true whether we
consider decreasing d either with the temperature gradient 8 held fixed, or with the
temperatures at the bottom and at the top held fixed.

4. Summary and discussion

We have revisited the classical linear stability problem for Rayleigh-Bénard
convection in a rotating system with so-called ‘free-free’ rigid boundaries. In
§2.1.1-§2.1.3, we discussed the properties of the cubic (2.1) which determines the
stability boundaries in the space spanned by the Rayleigh, Taylor and Prandtl
numbers. Because the coefficient B in (2.1) is always positive, we showed that
stability /instability is entirely determined by the signs of D and BC — D, as
summarized in table 1. Chandrasekhar sought to describe the convection curve
and overstability curve in the R T-plane as curves R\)(T) and R\”(T, P), respectively.
The critical wavenumbers for convection and overstability, a'“(T) and a'”(T, P),
and the oscillation frequency of the overstable modes w(7', P) were also calculated
by him. In each case, he took the Taylor number as the independent variable.
No closed-form formulae for the curves defining the marginal stability boundary
were noted by him nor any for the critical wavenumbers, the frequency or
the intersection point of the convection curve with the overstability curve. By
switching to the Rayleigh number R as the independent variable, we have
found in §§2.2.1 and 2.2.2 rather simple expressions for the convection curve T'“(R)
(2.19) and the overstability curve T'”(R, P) (2.22). Similarly, the critical horizontal
wavenumber for the onset of stationary convection a!“(R) (2.20) and oscillatory
convection a'”(R, P) (2.23) are described by simple formulae, as well as the frequency
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(R, P) (2.27) of the oscillations. None of these simple expressions appears to have
been noted before. They enabled us to derive the exact expression for the point
{R;, T} (2.25) beyond which the overstability curve determines the stability boundary
and in §3 the critical points {R), T'} (3.6) and {RY, T%} (3.11) on the stability
boundary beyond which an increase in viscosity or diffusivity destabilizes marginally
stable systems.

When the Taylor number is used as the independent variable, all the critical
numbers can also be expressed with closed-form formulae. For example, a cubic
equation in R describing the convection curve follows with (2.19)

R>—R,R?>—2R.TR —R.T? =0. (4.1)

Using the identity 4 cosh’(z) — 3 cosh(z) = cosh(3z) after a simple substitution which
deletes the quadratic term R.R?, the convection curve R'“)(T') turns out to be described
by

1

: 2 1
RNT) = Rc{g + 5(1 +6(T/R.))"? cosh [garcosh<

2+ 18(T/R.) +27(T/R,)>?
2(1+6(T/R,))*> ﬂ}

(4.2)

The expression for the overstability curve R\(T, P) follows from (4.2) by replacing R
and T with R/(24-2P) and P>T/(1+ P)?, respectively, as noted in §2.2.2. Clearly, we
would be hard-pressed to find the intersection point (2.25) by equating the expressions
for R(CC)(T) and RY(T, P). Similarly, (2.15) can be solved exactly to obtain the critical
wavenumber for stationary convection as a function of the Taylor number. For n = 1,

we find
1 2T "
a'l(T) = n{ cosh [garcosh<1 + F)} — 5} . (4.3)

This may be compared to the inverse relation a'(R) given by (2.20). The critical
wavenumber a”)(T, P) for oscillatory convection follows by replacing T in (4.3) by
P>T /(1 + P)% 1If the resulting (complicated) expression is substituted in (2.28), i.e.
setting @ = a”)(T, P) in (2.28), we obtain a closed-form formula for the frequency of
the oscillations w(7', P) instead of (2.27) which determines w along the overstability
section of the stability boundary as a function of R and P. Obviously, (2.27) is much
simpler. We believe that these far more complicated closed-form formulae are also
new. In the literature, we found one example where such a closed-form formula is
given (an expression for a'?(T) by Kloeden & Wells 1983), but inspection showed
that it was incorrect.

Chandrasekhar (1961, § 24) stated that ‘in contrast to non-rotating fluids, an inviscid
fluid in rotation should be expected to be thermally stable for all adverse temperature
gradients. Indeed, only in the presence of viscosity can thermal instability arise’, but
this is wrong because as we have shown in §2.3 the inviscid system is always unstable.
Chandrasekhar (1961, §32) treated R and T in this limit as numbers that remain
finite, while the Prandtl number P = v/« tends to zero. The problem is that the time
scale d?/v and the Rayleigh and Taylor number become indeterminate in the limit
v — 0. In his review of Chandrasekhar, Howard (1962) already voiced some doubts.

Finally, we point out the analogy between the present problem and that of
an electrically conducting fluid subjected to a vertical magnetic field with the
Lorentz forces replacing the Coriolis forces (Chandrasekhar 1961, chap. IV). Equally
simple expressions for the marginal stability boundary, critical wavenumbers and
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the frequency of overstable oscillations can be established when rigid stress-free
boundaries are assumed.
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